Impact of storage conditions on electromechanical, histological and histochemical properties of osteochondral allografts
نویسندگان
چکیده
BACKGROUND Osteochondral allograft transplantation has a good clinical outcome, however, there is still debate on optimization of allograft storage protocol. Storage temperature and nutrient medium composition are the most critical factors for sustained biological activity of grafts before implantation. In this study, we performed a time-dependent in vitro experiment to investigate the effect of various storage conditions on electromechanical, histological and histochemical properties of articular cartilage. METHODS Osteochondral grafts derived from goat femoral condyles were frozen at -70 °C or stored at 4 °C and 37 °C in the medium supplemented with or without insulin-like growth factor-1 (IGF-1). After 14 and 28 days the cartilage samples were quantitatively analysed for electromechanical properties, glycosaminoglycan distribution, histological structure, chondrocyte viability and apoptosis. The results were compared between the experimental groups and correlations among different evaluation methods were determined. RESULTS Storage at -70 °C and 37 °C significantly deteriorated cartilage electromechanical, histological and histochemical properties. Storage at 4 °C maintained the electromechanical quantitative parameter (QP) and glycosaminoglycan expression near the normal levels for 14 days. Although hypothermic storage revealed reduced chondrocyte viability and increased apoptosis, these parameters were superior compared with the storage at -70 °C and 37 °C. IGF-1 supplementation improved the electromechanical QP, chondrocyte viability and histological properties at 37 °C, but the effect lasted only 14 days. Electromechanical properties correlated with the histological grading score (r = 0.673, p < 0.001), chondrocyte viability (r = -0.654, p < 0.001) and apoptosis (r = 0.416, p < 0.02). In addition, apoptosis correlated with glycosaminoglycan distribution (r = -0.644, p < 0.001) and the histological grading score (r = 0.493, p = 0.006). CONCLUSIONS Our results indicate that quality of allografts is better preserved at currently established 4 °C storage temperature. Storage at -70 °C or at 37 °C is unable to maintain cartilage function and metabolic activity. IGF-1 supplementation at 37 °C can enhance chondrocyte viability and improve electromechanical and histological properties of the cartilage, but the impact persists only 14 days. The correlations between cartilage electromechanical quantitative parameter (QP) and metabolic activity were detected. Our findings indicate that non-destructive assessment of cartilage by Arthro-BST is a simple and reliable method to evaluate allograft quality, and could be routinely used before implantation.
منابع مشابه
Title: Impact of Storage Conditions on Electromechanical, Histological and Histochemical Properties of Osteochondral Allografts
Title: Impact of storage conditions on electromechanical, histological and histochemical properties of osteochondral allografts Authors: Tomas Mickevicius ([email protected]) Alius Pockevicius ([email protected]) Audrius Kucinskas ([email protected]) Rimtautas Gudas ([email protected]) Justinas Maciulaitis ([email protected]) Aurelija No...
متن کاملThe basic science and clinical applications of osteochondral allografts.
Indications for the use of osteochondral allografts for orthopaedic surgical applications are increasing with improved surgical techniques and advancing experience. Modern tissue banks have developed harvesting, processing, and storage methods that ensure an adequate, safe supply of grafts. Continued research is necessary to find a technique that maximizes chondrocyte viability and metabol...
متن کاملOsteochondral Allografts in the Ankle Joint
Purpose: The aim of this systematic review is to report about the clinical use of partial and total fresh osteochondral allograft in the ankle joint. The state of the art of allografts with regard to basic science, procurement and storage methods, immunogenicity, generally accepted indications and contraindications, and the rationale of the allografting procedure have been described. Methods: A...
متن کاملOptimizing Co2 Enhances Chondrocyte Viability during Cold Storage
INTRODUCTION: Successful repair of full thickness defects to articular cartilage remains a clinical and scientific challenge. The use of fresh osteochondral allografts to replace damaged articular cartilage with healthy tissues harvested from human cadavers is a viable treatment option. Allografts are stored at 4C prior to transplantation to await final culture results that can take two to thre...
متن کاملChondrocyte viability in press-fit cryopreserved osteochondral allografts.
The viability of chondrocytes in press-fit glycerol-preserved osteochondral allografts was compared to that in fresh autografts, after transplantation into load-bearing and non-load-bearing sites in mature sheep stifle joints. We used macroscopic grading, tonometer pen indentation testing, histology, sulfate uptake and viability as determined by confocal-microscopy to assess cartilage condition...
متن کامل